
Chemical Similarity Searching Using a Neural
Graph Matcher

Stefan Klinger and Jim Austin ∗

Advanced Computer Architectures Group - Department of Computer Science
Heslington, York, YO10 5DD - UK

Abstract. A neural graph matcher based on Correlation Matrix Memo-
ries is evaluated in terms of efficiency and effectiveness against two max-
imum common subgraph (mcs) algorithms. The algorithm removes im-
plausible solutions below a user-defined threshold and runs faster than
conventional mcs methods on our database of chemical graphs while being
slightly less effective.

1 Introduction

The purpose of chemical similarity searching is to find the most similar chemical
graphs in a large database to a molecular graph that is known to exhibit a
certain activity [1]. This assertion is based on the structure-similarity principle
[2] which states that two structurally-similar molecules are likely to exhibit a
similar activity. The term activity is commonly referred to a property of a
molecule that enables it to inhibit or alter the functions of proteins. Molecular
similarity searching is an integral part of the early stages of the drug discovery
process [3]. The idea is to take an active molecule and to find other compounds
with similar structure in a database. Usually, a certain fraction of the most
similar molecules are considered for further testing. Corporate-sized databases
contain millions of compounds and the number is likely to grow in the future.
Therefore, efficient methods are required to search these databases.

Many similarity search methods are based on the popular fingerprinting tech-
nique. Here, the properties of molecules are encoded as bits on fixed-sized bit-
strings. The bitstrings are then compared using a suitable distance metric [4].
Graph matching methods have also been applied in this area [5, 6]. Most of
the chemoinformatics literature uses a maximum common subgraph (mcs) al-
gorithm. A common subgraph S is a graph that is isomorphic to a subgraph
in graphs G1 and G2. A common subgraph is called a mcs if there exists no
other common subgraph of G1 and G2 that has more vertices than S. The mcs
problem is then transformed into a maximum-clique algorithm of an association
graph [7]. We propose to present a neural graph matching algorithm. This algo-
rithm is based on the Relaxation Labelling technique [8] and was implemented
on Correlation Matrix Memories (CMMs) [9]. We compare its efficiency and
effectiveness against the Bron-Kerbosch [10] and RASCAL [6] algorithms using
a sample database of chemical graphs.

∗Work funded By EPSRC Studentship GR/P03292/01

2 Algorithm

2.1 Definitions and Terminology

The graphs referred to in the following text are assumed to be undirected at-
tributed relational graphs (ARGs). The ARG is represented by G = (V,E,X, Y)
and consists of a set of vertices V = (v1, v2..., v|V |) which represent the objects
in the model. The set E = (e1, e2..., e|E|) is the set of graph edges, and these
represent the presence of a relationship of some sort between a pair of objects.
A set of vertex attributes is available on the objects in the graph that is denoted
by X = (x1, ..., x|V |). A set of edge attribute Y = (y1, ..., y|E|) defined on the
relations is available as an additional source of information. The neighbourhood
of a vertex vi is its set of adjacent vertices that is denoted by N(vi).

2.2 Relaxation By Elimination

Our algorithm is based on an optimisation technique, called Relaxation Labelling
[8]. The general idea behind relaxation labelling is to update individual map-
pings for graph vertices based not only on their feature measurements, but also
by combining contextual evidence from their spatial environment. Discrete re-
laxation [11] visits each vertex in turn and updates the label on that vertex in
order to gain maximum improvement in the matching criterion of the problem.
Probabilistic Relaxation [12] assigns probabilities to each label in the set giving
an estimate of the likelihood that the particular label is correct one for that fea-
ture. It then tries to maximise the probabilities iteratively taking into account
the probabilities associated with neighbouring features.

Unlike discrete and probabilistic relaxation, relaxation by elimination (RBE)
[13] initially keeps all plausible solutions and iteratively removes implausible so-
lutions below a defined similarity threshold. Consider a query graph Gq and a
model graph Gm. A vertex vq of the query graph Gq is assigned a set of can-
didates cq = (cq1, cq2, ..., cq|cq|, cqx ∈ Vm, x = 1, ..., |cq|) that correspond to the
currently plausible mappings from a query graph vertex to a set of model graph
vertices. We denote the set of all vertex correspondences by C = (c1, c2, ..., c|Vq|).

In the initial stage, each query graph vertex is allocated a set of feasible model
graph vertices based on the unary attributes they have in common. To put it
more precisely, we add model vertex vm to the set of query vertex candidates vq

if ||xq − xm|| < ε, where vq ∈ Vq and vm ∈ Vm.
During the relaxation process, the sets of candidates are pruned iteratively

until a stopping criterion is met. We introduce a support function S(cqi) =∑N(vq)
j=1 h(cqi, cj) for candidate i of query vertex q that counts the number of

query neighbour vertices that have candidates which support the current assign-
ment cqi. The consistency measure h(cqi, cj) is a discrete quantity and verifies
a satisfied local constraint. It is defined as

h(cqi, cj) =
{

1, when ||yqj − ycqicj
|| < ε

0, otherwise

The candidates cqi that have a support count below a defined threshold
S(cqi) < λ are subsequently removed. This process assumes that one knows a
priori a suitable similarity threshold λ for a given graph matching problem. In
the present study, we have pursued two strategies. The first sets the threshold
as a fraction of the query graph size, while the second approach keeps a percent-
age of the candidates with the highest support. We denote these strategies by
Threshold Willshaw [9] and Threshold Lmax [14], respectively.

2.3 Neural Architecture

The process described above has the potential of fast and efficient implemen-
tation using an architecture of inter-connected Correlation Matrix Memories
(CMMs) [9]. A CMM is a simple binary associative neural network that of-
fers quick training and highly flexible and fast search capability. The CMM
has been used as a match engine in a number of successful applications, e.g.
symbolic reasoning in the AURA (Advanced Uncertain Reasoning Architecture)
approach [15] and post code matching.

The list of candidates cq can be represented as a binary array. Furthermore, if
measurements are discretised, then the support function can be executed through
the use of bitwise operations on binary arrays. The bit vector of current can-
didates cq of query vertex vq is used as an input to the processing of evidence
counts for candidates cN(vq) of adjacent query vertices N(vq). This process can
be performed for each query node candidate list cq in parallel. The use of CMMs
also allows the sharing of rows in memory by multiple binary patterns. This en-
ables efficient use of memory at the expense of introducing false positives. By
superimposing the set of vertices from more than one model graph in the can-
didate list cq, multiple graph correspondences can be matched in parallel. In
order to keep the number of false positives to a minimum, we ensure that all
single vertex patterns are orthogonal to each other.

2.4 Complexity

The maximum common subgraph, maximum clique and subgraph isomorphism
problems are all known to be NP-complete [16]. All of the maximum-clique
algorithms are optimal methods which means they will experience exponential
order of time growth in the worst case. However, they might be much faster in the
average case. For example, Wilf [17] has shown that the maximum independent
set problem has sub-exponential time complexity of O(nlogn) in the average
case. The maximum-clique algorithms used in this study are all branch and
bound methods, i.e. they prune branches of the search tree if they cannot
possibly exhibit a better solution than the current best. Estimating the size of
these search trees is too difficult analytically [18] because of the sheer number
of combinations to consider. Conventional relaxation procedures replace the
problem with a polynomial-time algorithm, however, this guarantees to find
solutions that are only locally optimal. Relaxation By Elimination has a worst-
case time complexity of O(|Vq|2|Vm|2) [13].

3 Simulations

We propose a set of experiments to verify the efficiency of our Neural Graph
Matcher (NGM) in comparison to a standard maximum clique algorithm [10].
The second algorithm [6] is a more recent development and employs a fast ini-
tial screening stage where implausible graphs with a similarity below a mini-
mum similarity index are eliminated. A more rigorous maximum common edge
subgraph procedure is applied on the remaining graphs. The tests were con-
ducted on the P38 data set of molecular structures supplied by Evotec OAI
(http://www.evotecoai.com).

Data Set
No. of
Targets

No. of
Molecules

No. of
Comparisons

Avg

|V |
Std. Dev

|V |
P38 102 10,102 1,030,404 23.01 6.33

Table 1: Data Set

There exist two common approaches of presenting molecular graphs for sim-
ilarity searching. The first approach represents the vertices as the atoms and
connects vertices in the graph if there exists a bond between them. A different
procedure connects all atom pairs and labels the edges with the number of bonds
separating them in the shortest path. Note that the mcs determined by both
methods is not necessarily equivalent. We refer to the two approaches as Bond
Types (BT) and Topological Distances (TD), respectively. In addition, we have
chosen the atom types as vertex labels.

The algorithms were implemented in C++ using gcc 3.2.2 and executed on a
Ultra Sparc III Cu 900Mhz machine running Solaris 9. A time limit of 24 hours
was set for each trial. The total execution times are shown in Table 2.

RASCAL NGM Willshaw NGM Lmax
Test
Sets [10] 0.6 0.7 0.8 0.6 0.7 0.8 1% 5% 10%
BT >24h >24h 18,792 160 12,073 15,782 11,377 2,825 3,050 3,433
TD 9,763 n/a n/a n/a 5,265 4,374 3,628 4,175 4,345 4,801

Table 2: Execution times in seconds

To compare the effectiveness of the methods, we use the Guner-Henry (GH)
score [19] based on the precision (P) and recall (R) of the search [4]. Precision
is defined as the fraction of the active structures retrieved (a) over the number
of structures retrieved, i.e. P = a

n . Recall is defined as the fraction of retrieved
active structures (a) over the total number of active structures in the database
(A), i.e. R = a

A . We apply threshold values of R ≥ 0.05 and P ≥ 0.5 because
lower values represent unacceptable levels of performance. Queries resulting in
precision or recall value below these thresholds are removed from consideration
and are referred to as discards (D). The mean precision and recall values for
the resulting set above the similarity thresholds are depicted in table 3.

Algorithm Test P R D
NGM Willshaw 0.6 TD 0.816 0.099 74
NGM Willshaw 0.7 TD 0.824 0.082 83

RASCAL 0.7 BT 0.850 0.068 93
NGM Willshaw 0.8 TD 0.905 0.107 94
NGM Willshaw 0.5 TD 0.692 0.105 94

Table 3: Precision and recall values of non-discarded queries

We now rank the structures in the result set by applying a suitable similarity
metric. Here, we have chosen the score of Wallis et.al. [20] which is defined
as d(G1, G2) = |G12|

|G1|+|G2|−|G12| . Once the pair-wise similarities between each
target structure and each member of the database have been calculated, the
similarity values are sorted in order of decreasing similarity. We then determine
the GH score for every structure in the ranking, until the graph with the max-
imum GH score as well as precision and recall values above the thresholds is
determined. The GH score [19] is defined as

GH =
(

a(3 · A + n)
4 · n · A

) (
1 − n − a

N − A

)
(1)

The position in the ranking corresponding to the maximum GH score is used
as the cut-off point and subsequent structures in the list are removed from further
consideration. The mean precision and recall values over the remaining sets of
102-D non-discarded queries are shown in table 4.

Algorithm Test P R D Algorithm Test P R D
Bron-Kerbosch TD 0.868 0.073 47 NGM W. 0.7 TD 0.921 0.074 80
NGM L. 1 % TD 0.864 0.075 60 NGM L. 1 % BT 0.633 0.073 86
NGM W. 0.6 TD 0.879 0.070 61 RASCAL 0.7 BT 0.892 0.064 88
NGM L. 5 % TD 0.794 0.071 65 NGM L. 5 % BT 0.642 0.070 90
NGM L. 10 % TD 0.767 0.064 74 NGM W. 0.8 TD 0.927 0.087 93
NGM W. 0.5 TD 0.891 0.074 76 NGM L. 10 % BT 0.690 0.064 92

Table 4: Maximum GH score retrieval results

4 Discussion

This study showed that the proposed NGM is an efficient and versatile tool for
chemical similarity searching. Unlike the maximum clique algorithms that are
only efficient in the case when the association graph is sparse, or the RASCAL
algorithm that takes advantage of the sparseness of the chemical graphs and
its edge labels, our NGM can be applied efficiently to a wider range of labelled
graphs. The tests also indicated that our NGM seems to be less effective than
the Bron-Kerbosch [10] algorithm for the given vertex and edge features. This is
probably due to the ambiguous vertex correspondences that were not removed
by the relaxation process. However, these results seem to be encouraging and we

want to apply the NGM to a wider range of data sets using a variety of different
structural features.

Acknowledgements

The project was undertaken as an EPSRC CASE studentship no GR/P03292/01
with the support of Evotec OAI.

References

[1] P. Willet. Chemical similarity searching. J. Chem. Inf. Comput. Sci., 38:983–996, 1998.

[2] A.M. Johnson and G.M. Maggiora. Concepts and Applications of Molecular Similarity.
Wiley, New York, 1990.

[3] R.P. Sheridan. Why do we need so many chemical simiarity search methods? Drug
Discovery Today, 7(17):903–911, 2002.

[4] J.W. Raymond and P. Willet. Effectiveness of graph-based and fingerprint-based similar-
ity measures ... J. of Comput.-Aided Mol. Des., 16:59–71, 2002.

[5] A.T. Brint and P. Willet. Algorithms for the identification of three-dimensional maximal
common substructures. J. Chem. Inf. Comput. Sci., 27:152–158, 1987.

[6] J.W. Raymond, E.J. Gardiner, and P. Willet. Rascal: Calculation of graph similarity
using maximum common edge subgraphs. Comput. J., 45:631–644, 2002.

[7] H. Barrow and R. Burstall. Subgraph isomorphism, matching relational structures and
maximal cliques. Inf. Proc. Lett., 4:83–84, 1976.

[8] A. Rosenfeld, R.A. Hummel, and S.W. Zucker. Scene labelling by relaxation operations.
IEEE Trans. Systems, Man. and Cybernet., 13:353–362, 1983.

[9] D.J. Willshaw, O.P. Buneman, and H.C. Longuet-Higgins. Non-holographic associative
memory. Nature, 222:960–962, 1969.

[10] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph. Comm. ACM,
16(9):575–577, 1973.

[11] D.L. Waltz. Understanding Line Drawings of Scenes with Shadows. McGraw-Hill, New
York, 1975.

[12] W.J. Christmas, J. Kittler, and M. Petrou. Structural matching in computer vision using
probabilistic relaxation. IEEE Trans. Pattern Anal. Machine Intell., 17:353–362, 1995.

[13] M. Turner and J. Austin. Graph matching by neural relaxation. Neural Computing and
Applications, 7:238–248, 1997.

[14] D.P. Casasent and B.A. Telfer. High capacity pattern recoginition associative processors.
Neural Networks, 5(4):251–261, 1992.

[15] J. Austin. Distributed associative memories for high-speed symbolic reasoning. Fuzzy
Sets and Systems, 82:223–233, 1995.

[16] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, New York, 1979.

[17] H.S. Wilf. Algorithms and Complexity. Prentice-Hall, New Yersey, 1986.

[18] A. Levitin. Introduction to the Design and Analysis of Algorithms. Addison-Wesley, New
York, 2003.

[19] O.F. Guner. Pharmacophore Perception, Development and Use in Drug Design, page
194. International University Line, La Jolla, CA, USA, 2000.

[20] W.D. Wallis, P. Shoubridge, M. Kraetz, and D. Ray. Graph distances using graph union.
Pattern Recogn. Lett., 22:701–704, 2001.

