








The differences in segmentation strategies between clusters are obvious and
show that the algorithm allocates resources as expected. Small clusters and
simple ones obtain a simple description while larger or more complex clusters
(e.g., with curves with high variability) get more resources for a more accurate
representation. The final value of the quantization error as defined by equation
(3) is 574 � 103. In the case of a uniform segmentation of each prototype in 5
segments, the error increases slightly to 582 � 103. Moreover, using 5 segments
in each cluster fails to show the large differences in complexity of those clusters.
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Fig. 1: Results on the Topex/Poseidon dataset with K = 12 and P = 120

5 Possible extensions

While we have focused here on one particular implementation of the clustering
and segmenting idea, it can be implemented in many different ways. It is possible
for instance to replace the quadratic criterion

(
si(tl) � �k

p

)2 by another one, e.g.,
an absolute difference or a maximal squared error on sub-intervals. As long as the
segmentation criterion remain additive, dynamic programming can be used to
obtain an optimal prototype efficiently. This can be used to provide a piecewise
linear prototype, for instance.

Moreover, a greedy approach (based on hierarchical clustering, see e.g. [5])
can be used to provide efficiently a good but suboptimal segmentation when the
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criterion is no more additive (e.g., when the prototype is represented by a cubic
spline). The resource allocation part is also somehow independent from the
segmentation part: as long as the global clustering criterion is additive, optimal
allocation can be done efficiently with dynamic programming. This allows to
use more complex clustering scheme such as neural gas or self organizing maps
in their batch versions.
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