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Abstract. Feature selection is an important task for many machine
learning applications; moreover missing data are encoutered very often in
practice. This paper proposes to adapt a nearest neighbors based mutual
information estimator to handle missing data and to use it to achieve
feature selection. Results on artificial and real world datasets show that
the method is able to select important features without the need for any
imputation algorithm. Moreover, experiments also indicate that selecting
the features before imputing the data generally increases the precision of
the prediction models.

1 INTRODUCTION

Missing data are likely to occur in machine learning and data mining. The origin
of this missingness can be as diverse as the dysfunction of an equipment, the
too high resolution of a sensor, people refusing to answer personal questions in
a survey or the impossibility to conduct some measurements on certain patients
[1]. Here, we assume the data to be missing completely at random (MCAR). This
means that the probability of finding a missing value for the random variable X
is not related to the values of X nor to any specific feature in the dataset.

Even with missing values, the task of feature selection remains of great im-
portance for many tasks such as regression [2]. Nevertheless, to the best of our
knwoledge, few work has been done on this topic until now. This paper pro-
poses a way to achieve feature selection without the need to first impute the
data. Indeed, a feature selection algorithm should be able to select relevant fea-
tures independently of any imputation procedure because relying on imputation
would bring a bias whose effect on the feature selection would be really hard to
estimate. That is why this paper suggests estimating mutual information with
the well known Kraskov k-nearest neighbors estimator [3] directly from the data
with missing values. More precisely, a forward selection scheme is used with the
mutual information criterion to sequentially build the set of selected features.

The remaining of the paper is organized as follows. The basic concepts
of mutual information are introduced in Section 2, together with the Kraskov
estimator used in the experiments. The methodology followed as well as the
results are detailed in Section 3. Finally some conclusions and perspectives for
future work are given in Section 4.
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2 MUTUAL INFORMATION

Mutual information (MI) has been introduced by Shannon in 1948 [4]. It is a
symmetric measurement of the dependance between two random variables X
and Y . Its interest in feature selection is mainly due to its capacity to detect
non-linear relationships between variables and to handle groups of vectors [5].

2.1 Basic definitions

More formally, the MI of two random variables X and Y is defined as follows:

MI(X,Y ) = H(X) +H(Y ) −H(X,Y ) (1)

where H(X) is the entropy of X, defined for a continuous random variable as:

H(X) = −
∫
fX(ζX) log fX(ζX) dζX (2)

whith fX the probability density function (pdf) of X.
MI can be thus be rewritten as:

I(X;Y ) =

∫ ∫
fX,Y (ζX , ζY ) log

fX,Y (ζX , ζY )

fX(ζX)fY (ζY )
dζX dζY (3)

Since in practice neither fX , fY nor fX,Y are known, the MI can not be
directly computed but has to be estimated from the dataset.

In this paper, a nearest neighbors estimator introduced by Kraskov et al. [3]
is used since it is expected to be more robust than other popular estimators such
as histograms based estimators or kernel density estimators when working with
high-dimensionnal data. Indeed it does not require the estimation of probability
density function by dimension-sensitive methods such as Parzen windows [6].
Moreover, it has already proven to be succesful in the no missing value case [7].

2.2 The nearest neighbors estimator

The estimator is based on the Kozachenko-Leonenko estimator of entropy:

Ĥ(X) = − ψ(K) + ψ(N) + log(cd) +
d

n

N∑
n=1

log(εx(n)) (4)

where ψ is the digamma function, K the number of nearest neighbors considered,
N the number of samples in X, d the dimensionality of these samples, cd the
volume of a unitary ball and εx(n) twice the distance from the nth observation
in X, x(n), to its Kth nearest neighbor. See [8] for more details.

Calling τx(n) the number of points whose distance from x(n) is not greater
than 0.5 max(εx(n), εy(n)), some mathematical developpements then lead to two
slighlty different estimators [3]. Only one is considered here:

M̂I(X,Y ) =ψ(N) + ψ(K) − 1

K
− 1

N

N∑
n=1

(ψ(τx(n)) + ψ(τy(n))) (5)
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2.3 MI estimation with missing values

As already mentionned, in this paper the mutual information is estimated from
the data with missing values, thus before any possible imputation. Moreover,
Kraskov estimator (5) is totaly determined by εx(n) and εy(n), and thus by the
distance from each sample to its Kth nearest neighbor in each space. Usually,
the Euclidean distance is used on both the X and Y space.

Here this distance is adapted to handle missing values. More precisely, the
distance between two samples is computed by taking into account only the fea-
tures with no missing values in both samples. The distance is then normalized
with respect to the number of features used to compute it. This normalization
is essential to ensure that distances between different pairs of samples remain
comparable. Otherwise, the distances would obviously be larger between sam-
ples containing less missing values.

As an example, the distance between the vectors [3 • 8 7 2] and [1 9 • 3 4],
where • denotes a missing value, is computed by considering the first, fourth and

fifth elements of each vector; it is be equal to ( (3−1)2+(7−3)2+(2−4)2

3 )
1
2 . Note that

the term distance has been used abusively in this section since the similarity
measure defined here is not guaranteed to obey the triangle inequality.

3 METHODOLOGY AND EXPERIMENTAL RESULTS

In this section we combine the MI criterion estimated as described above with
a forward search procedure and show the effectiveness of this combination for
feature selection with missing data. More precisely, the first feature selected is
the one whose MI with the output is the highest. Then, at each step, we select
the feature whose addition to the set of already selected features leads to the
group having the maximal MI with the output.

3.1 Artificial datasets

In order to show the capacity of the proposed algorithm to select relevant fea-
tures, three artificial regression problems are built. All have a training set con-
taining 10 variables X1 . . . X10 that are uniformely distributed over [0 , 1].

The first problem is derived from Friedman [9]. The output Y1 is defined as

Y1 = 10 sin(X1 X2) + 20(X3 − 0.5)2 + 10X4 + 5X5 + ε (6)

where ε is a Gaussian noise with unit variance.
The second and third one have an output respectively computed as:

Y2 = X1 X2 + sin(X3) +X4 + 0.2 ε, (7)

Y3 = cos(2X1) cos(4X2) exp(X2) exp(2X3) + 0.2 ε. (8)
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The sample size is 1000 for all three datasets and the K parameter of the es-
timator is set to 6 as suggested in [3]. Obviously, only the five first, four and
three variables are relevant for the prediction in (6), (7) and (8) respectively.

For each equation, 10 datasets are generated which are then randomly filled
with 1, 5, 10 and 20% of missing values before we apply our algorithm. For all
of the 120 datasets generated this way, the proposed methodology always selects
the relevant variables first even when 20% of the values are missing. This proves
at least the interest of the approach and moreover indicates that an imputation
procedure does not seem essential in order to select relevant features.

3.2 Real world datasets

In order to further assess the quality of the method, experiments are then carried
out on 4 real world datasets. The goal here is again to show that relevant
features can be selected and that it is preferable to carry out feature selection
before imputation. To this end, the performances of a regression model for which
the missing values are imputed before feature selection are compared to those
obtained with features chosen by the approach described in this paper. The
imputation phase is still necessary since little work has been done, especially in
regression, to make prediction models able to handle missing values.

The prediction model used in the experiments is a radial basis function net-
work (RBFN). The number of neurons and the width of the Gaussian kernel are
determined using a 10-fold cross validation procedure. Two very popular impu-
tation methods are used: the 10-nearest neighbors imputation and a regularized
expectation-maximization (EM) algorithm proposed by Schneider [10].

The first real database used is the Delve census dataset1 for which the 2048
first entries are kept. The first 1500 are then used as the training set and the
remaining as the test set. The dimension of the data set is 104.

The second dataset is the nitrogen data set, containing 141 spectra discretized
at 1050 different wavelengths2 . As a preprocessing, each spectrum is represented
using its coordinates in a B-splines base to reduce the amount of features to 105
[11]. There are 105 data points in the training set and 36 in the test set.

The third one is the Housing dataset, available from the UCI Machine Learn-
ing repository3 and consisting of 13 features. 338 instances are kept for training
the model and 168 for testing it.

The last one is the Mortgage dataset. It consists in 16 features describing
the Economic data information of USA from 01/04/1980 to 02/04/20004 .

From each of these complete datasets, 10 new datasets are generated by
randomly introducing 1, 5, 10 and 20% of missing values. Then the forward
feature selection is conducted on the training part of the imputed datasets and
of the datasets with missing values, until a maximum number m of features is
reached. The maximum number of features selected is arbitrarily fixed to half

1http://www.idrc-chambersburg.org/index.html
2http://kerouac.pharm.uky.edu/asrg/cnirs/
3http://archive.ics.uci.edu/ml/index.html
4http://www.stls.frb.org/fred/data/zip.html
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% EM before EM after KNN before KNN after
1 0,687 ± 0,029 0,679 ± 0,029 0,706 ± 0,083 0,705 ± 0,041
5 0,729 ± 0,007 0,724 ± 0,007 0,792 ± 0,021 0,721 ± 0,242
10 0,752 ± 0,053 0,725 ± 0,023 1,019 ± 0,125 0,758 ± 0,029
20 0,772 ± 0,041 0,768 ± 0,037 0,830 ± 0,092 0,821 ± 0,339

Table 1: Prediction performances for the Nitrogen dataset with a RBFN model.

% EM before EM after KNN before KNN after
1 0,1819 ± 0,069 0,151 ± 0,052 0,171 ± 0,091 0,218 ± 0,098
5 0,2680 ± 0,075 0,266 ± 0,064 0,356 ± 0,157 0,266 ± 0,134
10 0,3068 ± 0,075 0,190 ± 0,062 1,006 ± 0,463 0,255 ± 0,110
20 0,3964 ± 0,178 0,224 ± 0,072 1,621 ± 0,284 0,507 ± 0,271

Table 2: Prediction performances for the Mortgage dataset with a RBFN model.

% EM before EM after KNN before KNN after
1 7,730 ± 0,610 7,634 ± 0,792 7,718 ± 0,453 7,606 ± 1,224
5 8,153 ± 0,934 7,039 ± 0,247 7,016 ± 0,739 6,995 ± 0,456
10 7,684 ± 0,398 7,373 ± 0,273 7,892 ± 2,121 7,488 ± 0,552
20 8,364 ± 0,464 7,646± 0,415 9,357 ± 0,990 7,611 ± 0,398

Table 3: Prediction performances for the Housing dataset with a RBFN model.

% EM before EM after KNN before KNN after
1 1,937 ± 0,090 1,892 ± 0,054 1,597 ± 0,111 1,902 ± 0,110
5 2,148 ± 0,052 1,911 ± 0,073 2,700 ± 0,282 2,272 ± 0,098
10 2,416 ± 0,392 1,972 ± 0,113 3,451 ± 0,146 2,674 ± 0,252
20 2,600 ± 0,126 2,174 ± 0,126 4,504 ± 0,257 2,872 ± 0,143

Table 4: Prediction performances for the Delve dataset with a RBFN model.

the number of original features with a maximum of 20. This allows us to see
which methods can quickly select the most relevant features.

3.2.1 Results

The results are presented in Tables 1 to 4. They correspond, for each percentage
(%) of missing values, to the average best RMSE observed on each of the 10
datasets together with the standard deviation over these 10 results. The impu-
tation strategy is referred to by ’EM’ or ’KNN’ and ’before’ or ’after’, depending
on when imputation has been done.

Imputing after feature selection leads on average to better performances than
the traditionnal method in all but 2 of the 32 cases. Moreover, it is in most of
the cases less sensitive to the increase of the proportion missing values. As an
example one can observe a reduction of the RMSE by more than 25% for KNN
imputation and by more than 50% for EM imputation with both models when
20% of the values are missing on the Mortgage dataset. More generally, the
RBFN model always performs better with the proposed approach as soon as 5%
of values at least are missing.

The same experiments were carried out with a k-nearest neighbors predictor;
their results confirm those obtained with the RBFN model. Indeed, selecting
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features before imputing missing values led to better performances in 29 out of
the 32 cases. Due to space limitations, the full results are not presented here.

4 CONCLUSIONS AND FUTURE WORK

In this paper, a new methodology to achieve feature selection for data with
missing values is introduced. The approach consists in a simple forward search
procedure, combined with the MI criteria. MI is estimated directly from the
uncomplete data with a nearest neighbors estimator using truncated distances.
The feature selection is thus independent of any imputation procedure.

Results on three artificial and four real-world databases show the efficiency
of this new procedure to select relevant variables. Moreover, results also indicate
that better performances can be achieved with regression models by conducting
feature selection prior to a potential imputation.

As the similarity measure employed in this paper is no longer a metric, future
work should focus on the effects of such a measure on the estimators of entropy
and mutual information. Comparisons with inputation techniques based on self-
organizing maps [12] could also be performed, since they use a similar proximity
measure as the one considered here.
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