






3.4.2 Training and Testing 

Both the hidden and output activations were set as tanh and the output binarised with 
a decision threshold of 0. The nets used a single hidden layer with the number of 
nodes equal to the average of the number of inputs and outputs, trained using bold-
driver backpropagation. At each epoch the cost function was evaluated on the 
validation set and weights at the best performing epoch were stored for use in testing. 

3.4.3 Performance Comparison 

Competitor cost functions were evaluated using the MCC [10]. An MCC score of +1 
represents a perfect prediction, 0 either no better than random or all assigned to one 
class, and -1 an inverse prediction. In a binary setting the MCC is defined as 
 

MCC =
tp×tn − fp!fn

(tp ! fp)(tp ! fn)(tn ! fp)(tn ! fn)
. 

 
More specifically, the methods were compared using the relative underperformance 
to the GMN-trained net (in relation to MCC), calculated as given below, 
 

𝜉ALT =
MCCALT −MCCGMN

MCCGMN
,   

 
where the subscript refers to the network’s cost function and ALT ∈ {RMSE, CE}. 
Underperformance was chosen instead of outperformance in order to avoid divide-by-
zero errors, as for several datasets the ALT cost functions gave zero MCC scores as 
all instances were assigned to the same class. In our observation the working range of 
𝜉ALT was from -1 (ALT score zero, GMN score > 0) to slightly above zero (ALT 
score slightly exceeding GMN score). An underperformance value of -1 will represent 
the strongest evidence in our test set for the superiority of GMN. 

 

4 Results 

Figure 1 shows the average competitor underperformances 𝜉ALT across five different 
(dataset shuffling and weight) initialisations as a function of  IR. (An MCC score for a 
run is based on the combined confusion matrix of all five folds, not on an average of 
each fold.) For IR < 20 all three cost functions behave similarly, but as the IR 
becomes more extreme there are more examples of clear superiority of GMN. In the 
most extreme example (abalone19), with an IR of 129.44, both the MSE and CE 
trained networks make no attempt to predict the minority class and thus achieve zero 
MCC scores, while in contrast GMN attains a positive MCC of 0.09±0.04. 

Though increasing IR generally leads to better relative performance of GMN, 
there are exceptions. One such is abalone-20_vs_8-9-10 (IR=72.69), for which both 
ALTs marginally outperform GMN. We investigated this case with an additional 55 
runs, discovering that even in such an apparently unfavourable case there may be 
benefits to the use of GMN, as evidenced in Figure 2. It can be seen there that while 
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the two ALT MCC scores have a higher average there is much more variance, and in 
particular more instances for which both ALTs have an MCC of zero (all cases 
assigned to the majority class), and thus no discretionary power.  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1: Underperformance (measured by MCC) of both MSE and CE relative 
to GMN, plotted against imbalance ratio (IR). GMN outperforms the competitor 

cost functions everywhere in the shaded region. 

 

 

 

 

 

 

 

 

Fig. 2: Distribution of out-of-sample scores across all random seeds/k-folds 
(300 total) for GMN, CE, and MSE cost functions, for the exceptional dataset 

abalone-20_vs_8-9-10. 

5 Discussion 

We have demonstrated the advantage of GMN, a newly proposed cost function based 
on an approximated G-mean, over the conventional cross entropy (CE) and MSE on 
30 imbalanced UCI datasets (IRs from 5.55 to 129.44). For IRs less than 20 the three 
cost functions performed similarly, but higher imbalances showed a clear benefit of 
using GMN. The GMN scores were also found to less sensitive to initial conditions. 

A number of avenues will be explored in future work. The approximated F-score 
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of [9], which was tested only on a dataset of relatively low IR (around 14), will be 
implemented as a further competitor cost function to GMN, and tested on the same 30 
UCI datasets used here, to discover if the approximated F-score does indeed suffer 
from a problem of convergence to local optima for these more challenging cases. 

 Given that GMN has here shown its largest benefits in cases of very high IR, 
further test datasets with high imbalance ratios will be collected or generated (in the 
latter case either by oversampling a naturally occurring majority class or by the 
generation of synthetic data where the imbalance ratio can be controlled).     

In addition, the extension of GMN from binary classification problems to multi-
class could be examined. [11] have shown that existing approaches such as data 
resampling, believed to be effective in addressing the class imbalance problem, may 
in fact only be effective for two-class datasets. Lastly, the current GMN-based 
training method uses batched backpropagation which computes and sums the 
derivatives of all training patterns and updates once every epoch; however there is no 
reason why mini-batch training (as in [9]) could not be investigated, which could 
potentially provide quicker convergence and better accuracy on larger datasets. 
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