








Fig. 2: Time courses averaged over the cycles and frequency transforms of the
first factors s1;i when R = 6 (dark blue lines), and of the EEG at FCZ (subject-
level curves in blue and mean curves over the subjects in black and dotted). The
stimulation temperatures are shaded and a star indicates a significant difference
between the amplitudes at FCZ and of s1;i at k � f ? (one-sample t-tests).
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Fig. 3: First three (a) spatial patterns p1, p2 and p3 and (b) between-subject
weightings w1, w2 and w3, when R = 6 (r being the factor index).

one of the signal at FCZ for all conditions except c2. The absence of periodicity
gain for all R for condition c2 suggests that there is indeed no periodic response
for this condition, as the periodicity at FCZ was not significant in Sect. 2. Also,
Fig. 1b indicates the periodicity of sr ;i for all r = 1; : : : ; R, the factors being
ordered in decreasing order of maxi M � (sr ;i ). It can be noted that the first time
course s1;i is the most periodic for all three first conditions i and all R, suggesting
that employing shared spatial patterns for the conditions is indeed relevant.

Fig. 2 illustrates s1;i extracted when R = 6 compared to the signals at the
single electrode FCZ. One can observe that considering all the channels and
subjects at once in the CP model improves the SNR of the periodic components,
while preserving their temporal dynamics, especially the latencies of the peaks.

Finally, Fig. 3 depicts the first spatial patterns fp i g3
i=1 and subject weightings

fw i g3
i=1 obtained when R = 6. The first extracted topography is consistent

with the nature of the considered stimuli [4] and w1 indicates that the first
spatio-temporal factor is reflected in all subjects with well-balanced proportions,
whereas the second and third factors appear to be more subject-specific.



5 Conclusion

This paper shows that tensor approximations can be employed to enhance the
SNR of some EEG responses. In particular, we found a relevant spatial pat-
tern shared by four modalities and associated with modality-specific periodic
time courses, reflecting the SSR of all subjects. Employing unsupervised tensor
factorizations enables (1) avoiding overfitting a given criterion, (2) highlighting
temporal activity patterns from all subjects with a higher SNR than the raw
mean signals and (3) considering all the modes of a multi-way data set at once,
without requiring further averaging nor data selection. These encouraging re-
sults motivate further works to study the model fitting and its robustness as a
function of both the model and the sample sizes and to enlarge its application.
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