
Autoregressive Convolutional Recurrent Neural
Network for Univariate and Multivariate Time

Series Prediction

Matteo Maggiolo and Gerasimos Spanakis

Department of Data Science and Knowledge Engineering, Maastricht University
6200MD, Maastricht, the Netherlands

Abstract. Time Series forecasting (univariate and multivariate) is a
problem of high complexity due the different patterns that have to be
detected in the input, ranging from high to low frequencies ones. In this
paper we propose a new model for timeseries prediction that utilizes convo-
lutional layers for feature extraction, a recurrent encoder and a linear au-
toregressive component. We motivate the model and we test and compare
it against a baseline of widely used existing architectures for univariate
and multivariate timeseries. The proposed model appears to outperform
the baselines in almost every case of the multivariate timeseries datasets,
in some cases even with 50% improvement which shows the strengths of
such a hybrid architecture in complex timeseries.

1 Background & Introduction

Time Series (TS) modelling and forecasting has been the target of research
for more than ninety years now, however the first contributions using neural
networks happened in the 1980s when Recurrent Neural Networks (RNN) [1]
were introduced. New advanced variants of a base RNN were proposed in the
following years, namely the Long-Short Term Memory (LSTM) network [2] in
the 1990s and the Gated Recurrent Unit (GRU) network [3] in 2014. These
models have shown to be able to model dependencies deep in time, and therefore
are very useful to model long-term, low frequency patterns in the data. In
the mean time, Convolutional Neural Networks (CNN) [4], initially applied to
image classification were also applied to TS analysis, takes advantage of the
high correlation between neighbouring time steps, since it makes the dimensional
continuity assumption: features and values that are close in the input dimension
(in this case, it is time) are more correlated with respect to inputs at very distant
positions. Work has been done to fully exploit this type of networks in the field
of TS analysis, for example by feeding in different transformation of the input [5].
The continuity assumption makes this type of network very good at modelling
short-term, high frequency patterns in the input signal.

Different approaches (in different fields) have tried to combine the two neural
models (RNN and CNN) into a hybrid model (e.g. [6]). In this direction we also
contribute with a newly proposed model but also by comparing it with different
baselines, namely the popular ARIMA (Auto-Regressive Integrated Moving Av-
erages) models , Support Vector Machines (SVM) , baseline LSTM and GRU,
as well as models from recent literature (and are presented in the experiments).

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.



2 Proposed Model

Our proposed model is inspired by the observations about RNNs and CNNs made
in the Introduction and is suitable for both the univariate and multivariate TS
forecasting problems. The model is composed of three parts and an overview
can be seen in Figure 1: (a) a multi-scale, convolutional part to extract features
from the input TS, (b) a recurrent part with three GRU units to encode the
sequence, followed by a linear transformation to obtain the output and (c) an
autoregressive part. These parts are analyzed in detail below.

CAUSAL
CONVOLUTION

CAUSAL
CONVOLUTION

CAUSAL
CONVOLUTION

CAUSAL
CONVOLUTION

CAUSAL
CONVOLUTION

Variables

Time

GRU

Downsample
1/2

Downsample
1/4

CAUSAL
CONVOLUTION

GRU

GRU

C
O

N
C

AT
EN

AT
E

LI
N

EA
R

TR
AN

SF
O

R
M

 
LI

N
EA

R
TR

AN
SF

O
R

M
 

Prediction

t = W+1

t = W+2

LI
N

EA
R

TR
AN

SF
O

R
M

 

t = W+L

Input Series

S

S'

S''

LI
N

EA
R

TR
AN

SF
O

R
M

 

+

+

+

Fig. 1: A representation of the proposed model architecture.

First, the input TS is downsampled twice by a factor of 1/2 and 1/4 (averag-
ing the values), generating a total of three input series of different lengths. This
procedure will enable the convolutional layer to model a larger frequency band
of the signal. In formulae, if the input TS is S ∈ RT×v, we have the three series:

S = (s1, s2, s3, ..., sT )

S′ = (s′1, ..., s
′
T/2) =

(
s1+s2

2 , s3+s4
2 , ...

)
S′′ = (s′′1 , ..., s

′′
T/4) =

(
s1+s2+s3+s4

4 , ...
)

where we assumed that our window size T = 0 mod 4. Then we apply two
layers of causal convolution with the Rectifier Linear Unit (ReLU) as activa-
tion function. For filter k = 1, ..., Nf at the first layer and for filter filter

j = 1, ..., Nf at the second layer we will have: qk = RELU(W
(1)
k ∗ S + b

(1)
k )

and gj = RELU(W
(2)
j ∗ Q + b

(2)
j ). Similarly we can define the q and g for the

other two series (namely q′k, q′′k , g′j , g
′′
j ). where W and b denote the filter weights

and biases, which are different for each layer and for each TS resolution, and ∗
represents a causal convolution, as described in [7]. The outputs of the multi-
scale convolution are the sequences G, G′ and G′′ which have different lengths
and different receptive fields over the input sequence, so as to capture multiple
frequencies of patterns. We decided to use downsampling to preprocess the TS,
instead of using a convolution with larger receptive field and stride, to reduce
the number of parameters of the CNN layers. Furthermore, this constrains the
convolutional kernels in the downsampled streams of the architecture to only
model the low frequency patterns in the data.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.



Next, we encode the matrices utilizing three GRU unit [3]. We compute
the GRU’s hidden states as: hi = GRU(hi−1, gi) and similarly for h′i and h′′i .
Finally, the output prediction of the nonlinear part at time t is computed with a
linear transformation of the concatenation of last recurrent hidden states, that
is ot = W rec

t [hT , h
′
T/2, h

′′
T/4] + brect , where W rec

t and brect are the weights/biases
to learn. Note that these are different for every output time step t.

Finally, since the network components are nonlinear, as denoted in [6], the
outputs are not sensitive to changes in the scale of the inputs, and this might
give rise to problems in the case of non-stationary scale changes in the input
sequences. Therefore, we subdivide the model prediction in a non-linear part (as
explained in the two previous sections), plus a linear regression on the inputs.
The linear prediction is given by lj = sj W lin + blin, where W lin ∈ RT×L,
blin ∈ RL, L is the length of the model’s prediction, sj is a column vector
representing the input series for the variable j. The weights and biases for the
linear shortcut are shared among the different variables. Furthermore, we reduce
the regression input window to 5 previous steps in all cases.

The column vector lj is therefore the linear prediction for the variable j. The
final prediction for the whole model is then the sum of the linear and non-linear
predictions, that is ŝjT+t = ojt + ljt . Afterwards the overall model is trained by

minimizing the mean square loss function, i.e. L = 1
N

∑
i(Yi − Ŷi)2.

3 Experiments

We are testing performance for both univariate and multivariate TS forecasting,
thus we are using 4 different datasets, two univariate (Daily values for Mel-
bourne’s minimum temperature1 and The Zurich Sunspot dataset2) and two
multi-variate (Energy production for 10 different photovoltaic power plants in
California 3 and SML2010 dataset4, containing internal and external measure-
ments in a domotic house).

For all datasets, we apply per-variable normalization with µ = 0 and σ = 1.
For all datasets we also apply a gaussian filter of size 5 and std 2 (for each
variable), in order to smooth out some of the noise in the data. The model
comparison is performed using k-fold cross-validation with k = 5. As per metrics,
we compare the model prediction’s accuracy on the test set using three different
metrics, the Mean Squared Error (MSE), the Mean Absolute Error (MAE) and
the Dynamic Time Warping (DTW) (using FastDTW [8]).

Three types of experiments were performed with the aforementioned models.
First all the models were trained and compared to predict only one step into the
future, then a subset of suitable models were trained to predict more than one
output step out of time, and subsequently compared them against each other and

1https://datamarket.com/data/set/2324/daily-minimum-temperatures-in-melbourne-
australia-1981-1990

2https://datamarket.com/data/set/22t4/monthly-sunspot-number-zurich-1749-1983
3https://www.nrel.gov/grid/solar-power-data.html
4https://archive.ics.uci.edu/ml/datasets/SML2010

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.



themselves with also different prediction lengths. The last experiments test the
need for the autoregressive shortcut, and they were performed using synthetic
data that presents varying levels of trend and periodicity.

Table 3 shows the results for the univariate methods. Here it is possible to
see that, for the Temperature dataset, the ARIMA model is significantly better
against the baseline and the proposed model. The proposed model still ranks
second, but not significantly better than the Simple LSTM model. For the
Sunspot dataset, on the other hand, the original LSTNet [6] performs best on
average but the uncertainty on the measures suggest that further experiments
should be performed to better validate these rankings. The proposed structure
still ranks third on average, but it is very close in performance with the first
two.

Name One step forecast loss (Univariate)
Dataset Temperature Sunspot

Loss MSE(×102) MAE(×10) MSE(×102) MAE(×10)

Simple LSTM 1.362±0.126 0.9197±0.0400 0.564±0.024 0.5425±0.1076
Deep GRU 2.003±0.220 1.1077±0.0554 2.238±0.271 0.9060±0.0348

SVM 1.771±0.338 1.0321±0.0837 2.773±0.455 0.7133±0.0332
ARIMA 1.190±0.022 0.8659±0.0102 0.492±0.081 0.5230±0.0468
LSTNet 1.447±0.090 0.9530±0.0548 0.477±0.087 0.4980±0.0505

Our Model 1.317±0.083 0.9019±0.0290 0.501±0.126 0.5194±0.0653

Table 1: Results on the 1-step TS prediction task on the univariate datasets

On the other hand, for the task of multivariate prediction (results can be
find in Table 3), the proposed model is able to outperform all the other models
used for comparison, comprised the LSTNet, which follows up in the second
place, with a 40% higher average error (MAE) on the Energy dataset, and a
20% higher average error on the SML2010 dataset. These results confirm our
hypothesis that for a simple prediction (just one step ahead) univariate time-
series problem, traditional models (such as ARIMA) perform very well but when
multiple variables are introduced then the ability of CNNs and RNNs to capture
their complex relations proves necessary for improving performance.

Name One step forecast loss (Multivariate)
Dataset Energy SML 2010

Loss MSE(×102) MAE(×10) MSE(×102) MAE(×10)

Simple LSTM 0.691±0.025 0.5734±0.0046 1.070±0.090 0.5676±0.0762
Deep GRU 8.563±2.239 2.0517±0.2572 2.588±0.296 1.0106±0.0751
RidgeReg 0.626±0.175 0.5203±0.0717 0.517±0.281 0.3343±0.0505
LSTNet 0.164±0.044 0.2551±0.0313 0.105±0.035 0.1269±0.0178

Our Model 0.101±0.037 0.1824±0.0374 0.085±0.037 0.1061±0.0223

Table 2: Results on the one step TS prediction task on the multivariate datasets

Finally, for the task of multiple steps prediction, results are summarized
in Table 3 (for univariate datasets) and Figure 2 (for multivariate). The loss
displayed for both cases is Dynamic Time Warping on the output time steps.
Looking at the results of univariate datasets, it is possible to see that in all cases
but one the simple LSTM model is clearly better than others but also the loss
values are very close and not significantly different.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.



The story is different for the multivariate datasets, where we are able to
better distinguish the models’ performances, thus we opted for a figure to better
highlight the differences. In both datasets the results are similar: the suggested
model significantly outperforms the baseline, and achieves a very low overall
loss on the predictions. Its loss is significantly smaller than LSTM which gets
the second place (more than 50% improvement) for all multiple time steps in
the SML2010 dataset, and for the three steps prediction in the Energy dataset.
Furthermore, as the number of predicted time steps increases, LSTNet becomes
more unstable over some of the training folds, and its loss rises, possibly because
of problems with our implementation. Its loss, however, when it managed to
converge to the minimum on other training folds, was still higher than that of
the proposed architecture. Further experiments are required to better pinpoint
the comparison between our model and the LSTNet, and to clearly assess the
better performance of the former.

Name Multi step DTW forecast loss (Univariate)
Dataset Temperature Sunspot

# Steps 3-steps 5-steps 7-steps 3-steps 5-steps 7-steps

Simple LSTM 0.592±0.033 1.475±0.143 2.679±0.303 0.317±0.059 0.720±0.111 1.187±0.217
Deep GRU 0.651±0.063 1.847±0.115 2.710±0.156 0.364±0.147 0.874±0.319 1.421±0.448

LSTNet 0.811±0.008 1.778±0.061 2.870±0.115 0.377±0.080 0.832±0.124 1.365±0.224
Our Model 0.679±0.038 1.672±0.133 2.598±0.118 0.359±0.095 0.859± 0.256 1.331±0.362

Table 3: Results on the multiple-steps prediction task on the univariate datasets

Fig. 2: Results of DTW on the multivariate datasets

Finally, we perform some tests to verify the effect of the linear autoregressive
shortcut. Data was generated as a list of 80 time series, each having a length of
120 steps. In Figure 3 we see the prediction error (y axis shows the value-target)
using a sliding window approach. The architecture with the autoregressive com-
ponent (blue) is able to better capture the variable linear trend and periodicity
of the data. Without the autoregressive component (orange), the error in the
prediction of the oscillations accumulates very quickly over time, while in the
presence of the component the information is almost perfectly retained even after
many prediction steps. With regard to the predicted trend, the model without
the shortcut is noticeably worse at keeping track of the trend’s slope.

4 Conclusion and Future Work

In this paper we presented a neural architecture based on three components: a
feature extractor, in the form of two down-sampling levels and two convolutional

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.



Fig. 3: Comparison between model with linear regression shortcut (blue), with-
out (orange) and the original data (green). Both models are given all timesteps
before the vertical black line and predict future time steps using a sliding window
approach.

layers applied to each of the inputs, a recurrent encoder, that encodes the input
series and the extracted features as a fixed dimensional vector, from which the
prediction will be inferred linearly and a linear connection between the inputs
and the outputs that shortcuts the problem of scale insensitivity.

Detailed experiments on the model showed that a combination of a CNN and
a RNN is able to outperform most of the baseline models in specific settings.
More specifically, we demonstrate the effectiveness of a feature extractor over
a simple recurrent encoding, especially in multivariate TS. The architecture,
however, was not as effective for the task of univariate forecasting, possibly
because the datasets were simple enough for simpler models.

Further testing on the model and its hyperparameters is required to fully
assess its capabilities, along with a detailed ablation study to confirm the ef-
fect of each component. It could be interesting to investigate the effect of the
attention mechanism on the nonlinear structures, since it proved to be effec-
tive in sequence-to-sequence problems Attention modeling would give the model
more freedom in which parts to look at and which parts to ignore, leading to
interesting visualizations.

References

[1] J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. PNAS, 1982.

[2] J. Schmidhuber S. Hochreiter. Long short-term memory. Neural Computation, 9:1735–
1780, 1997.

[3] K. Cho et al. Learning phrase representations using rnn encoderâdecoder for statistical
machine translation. arXiv:1406.1078 [cs.CL], 2014.

[4] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[5] Y. Chen Z. Cui, W. Chen. Multi-scale convolutional neural networks for time series clas-
sification. arXiv:1603.06995v4 [cs.CL], 2016.

[6] Y. Yang H. Liu G. Lai, W. Chang. Modeling long- and short-term temporal patterns with
deep neural networks. arXiv:1703.07015v2 [cs.CL], 2017.

[7] Oord, et Al. Wavenet: A generative model for raw audio. arXiv:1609.03499v2, 2016.

[8] P. Chan S. Salvador. Fastdtw: Toward accurate dynamic time warping in linear time and
space. KDD workshop on mining temporal and sequential data, 2004.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.




